Введение в цифровую схемотехнику



Двоичное кодирование - часть 4


При сложении любых двух n-разрядных двоичных чисел может получиться n-разрядное или (n+1)-разрядное число.

Точно так же производится вычитание. Пусть из числа 10010 (18) надо вычесть число 0111 (7). Записываем числа с выравниванием по младшему разряду и вычитаем точно так же, как в случае десятичной системы:

 \frac{ - {\mbox{10010}\atop \mbox{\,\ 0111}} } { \mbox{\,\ \ \ 1011} }

При вычитании 0 из 0 получаем 0, при вычитании 0 из 1 получаем 1, при вычитании 1 из 1 получаем 0, при вычитании 1 из 0 получаем 1 и заем 1 в следующем разряде. Результат — 1011 (десятичное 11).

При вычитании возможно получение отрицательных чисел, поэтому необходимо использовать двоичное представление отрицательных чисел.

Для одновременного представления как двоичных положительных, так и двоичных отрицательных чисел чаще всего используется так называемый дополнительный код. Отрицательные числа в этом коде выражаются таким числом, которое, будучи сложено с положительным числом такой же величины, даст в результате нуль. Для того чтобы получить отрицательное число, надо поменять все биты такого же положительного числа на противоположные (0 на 1, 1 на 0) и прибавить к результату 1. Например, запишем число –5. Число 5 в двоичном коде выглядит 0101. Заменяем биты на противоположные: 1010 и прибавляем единицу: 1011. Суммируем результат с исходным числом: 1011 + 0101 = 0000 (перенос в пятый разряд игнорируем).

Отрицательные числа в дополнительном коде отличаются от положительных значением старшего разряда: единица в старшем разряде определяет отрицательное число, а нуль — положительное.

Помимо стандартных арифметических операций, в двоичной системе счисления используются и некоторые специфические операции, например, сложение по модулю 2. Эта операция (обозначается A) является побитовой, то есть никаких переносов из разряда в разряд и заемов в старших разрядах здесь не существует. Правила сложения по модулю 2 следующие:

0 \oplus 0 = 0
,
0 \oplus 1 = 1,
1 \oplus 0 = 1
,
1 \oplus 1 = 0
. Эта же операция называется функцией Исключающее ИЛИ. Например, просуммируем по модулю 2 два двоичных числа 0111 и 1011:

 \frac{ \oplus {\mbox{0111}\atop \mbox{1011}} } { \ \ \, \mbox{1100} }

Среди других побитовых операций над двоичными числами можно отметить функцию И и функцию ИЛИ.Функция И дает в результате единицу только тогда, когда в соответствующих битах двух исходных чисел обе единицы, в противном случае результат —0. Функция ИЛИ дает в результате единицу тогда, когда хотя бы один из соответствующих битов исходных чисел равен 1, в противном случае результат 0.




Содержание  Назад  Вперед